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THEORY OF THIN-WALLED RODS

By A. L. Goldenveizer

Thin-walled rods of open section in deforming under load do not -
always follow the same laws which have been established for solid closed
section rods. For this reason there has arisen in recent years the
practically important problem of the formulation of an acceptable theory
of thin-walled rods, in the solution of which fundamental results have
been attained in the Soviet Union (V. Z. Vlasov).

This problem is dealt with also in the present paper, which differs
from previous work in that the theory of thin-walled rods is constructed
without the employment of special assumptions on the basis of a qualita-
tive analysis of the integrals of the equations of the theory of shells.
The obJject of the investigation is to determine approximately the prin-
cipal stress state in a rod which is loaded along its length by a trans-
verse force R and a system of forces and moments T applied at the
end sections. It is assumed that the end sections of the rod are fixed
arbitrarily and that the longitudinal edges are free of connections.

In msking use of the term "principal stress state" we mean to say
that we are not interested in the local stress states arising at the
ends and which reduce to zero as the distance from them increases. This
assumption lies alsc at the basis of the theory of solid rods. 1In the
case of thin-walled rods, however, 1t leads to a more marked deviation
from the true conditions because the local stresses reduce to zero less
rapidly the less.the wall thickness of the rod. :

The rod is considered as a long cylindrical shell of arbitrary
contour, the thickness of which may vary in the transverse direction.
The transverse load R 1is assumed arbitrarily, but such that similarity
is obtained in all cross-sections and the end forces and moments T
are variled in a suitable manner by the distributed normal and shear
forces. The problem posed is the following: From the system of
integrals of the complete system of equations of a shell to separate
out those integrals which correspond to the principal stress states of
the rods.

*"0 teorii tonkostennykh sterzhiei.” Prikladnaya Matematika
i Mekhanika, Vol. XIII, Nov.-Dec. 1949, pp. 561-596.
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There is first of all investigated a particular integral and it
is shown that the transverse load in the case, and only in the case,
where it varies linearly over the length of the shell-rod may be repre-
sented in the form of two components R = R} + Ro in such manner that
for each of them separately an approximate value of the particular inte-
gral may be found by an elementary method; R, the part of the total
load statically equivalent at each cross-section to the entire load R,
gives the particular integral for which on the longitudinal sections
only shearing stresses arise, and Rp, the remaining statically self-
balanced part of the load in each section, gives the particular inte-
gral for which the normal and transverse stresses in the longitudinal
sections play the fundamental part.

There are further sought such particular integrals of the
homogeneous system in which

(a) The transverse forces and moments on the longitudinal edges
mey with sufficient accuracy be assumed equal to zero.

(b) The intensity of the stresses in the cross-sections drops at
a considerably slower rate than in the case of other integrals.

The class of such particularly slowly damped stress states is
found to be wider than that which results from the principle of Saint-
Venant because there is added the statically self-balanced solution in
which the normal stresses in the cross-section are distributed according
to the law of sectorial areas. Thls stress state does not reduce to
zero in a shell type rod that is not too long and must therefore be
considered as a principal one. It is in the very presence of this
stress state that open section rods differ from solid closed section
rods. When the length of the rod-shell exceeds a certain limit, however,
a thin-walled rod in the fundamental character of its stress state
ceases to differ from a solid rod although of course a difference is
maintained in the character and rate of reductlion of the local stress
states.

These considerations lead to the imposing of restrictions on the
upper limit of the length of a thin-walled rod if we wish to consider
it as a structure which behaves in a fundamentally different manner
from a solid rod. The small rate of damping of the local stress states
imposes restrictions also on the lower limit of length of the rod-shell,
namely the length must be sufficient for the local stresses to reduce
to a sufficient degree at the center sections.

Assuming that both these limitations are satisfied and that the
transverse load R varies linearly over the longitudinal direction,
a theory of computation of thin-walled rods may be constructed on the
assumption that their principal stress state is with a certain accuracy
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described by a linear combination of the particular integral of a non-
homogeneous system of equations of the rod and very slowly damping
solutions of the homogeneous equations. The boundary conditions at the
transverse ends of the rod-shell can not in this case be set up at each
roint but must be replaced by integral conditions. The method resulting

“from such approach of the computation of short rods leads to practical

formulas. Rods of medium length, occupying in the character of their
behavior an intermediate position between short and long rods (the lat-
ter do not require investigation since they may be considered as solid)
were not capable of being investigated to the end.

The method thus obtained of the computation of short thin-walled
rods was found to be more complicated than that arrived at by V. Z. Vlasov
(reference 1). These two methods approach each other considerably if
the equations here presented are simplified by rejecting the components
which take into account the -effect of shear. Even with this simplifica-
tion, however, agreement in the computational relations is not complete.
Specifically, the equation determining in the theory of V. Z. Vliasov
the torsion of a thin-walled rod is not confirmed.

As regards the fundamental assumption made in the theory of Vlasov
that the cross-section of the rod maintains its shape, it is not in
itself true, nor is there a need for such an assumption. The use of
the assumption does not, however, lead to errors in the computations of
stresses because the principal stress state 1s affected only by those
deformations for which the cross-section does not vary.

We may remark in conclusion that in the Soviet Union (A. R. Adadurov)
and later abroad (Kdrmin) a theory was worked out of the computation of
cylindrical shells, the cross-sectional contour of which can not deform
due to the presence of a large number of disphragms. This structure
must be distinguished from a thin-walled rod. For this reason it is
not possible from cur point of view to agree with G. Y. Dzhanelidze and
Y. G. Panovko (reference 2) who consider the theory of A. R. Adadurov
as a generalization of the theory of V. Z. Vlasov based on the fact that

‘Adadurov reJected the assumption on the absence of shear. The theory

of thin-walled rods is in principle different from the theory of shells
with transverse forces because for the former there is sought only the
principal stress state while for the latter it is necessary to investi-
gate also the local stress states. It is due to this fact and not to
the fact that the assumption on the absence of shear is rejected in the
theory of shells with diaphragms that the conditions on the transverse
ends are set up at each point. In the present paper, formulas are given
for the computation of thin-walled rods with account taken of shear
deformations. In view of what was sald above, however, they do not
agree with the results of A. R. Adadurov.
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1. FUNDAMENTAL EQUATTIONS

We refer the center of area of the shell to the 1ines of curvature
and introduce "the nondimensional parameters

Q
1}
sl
ho)
1l
Rl

where £ 1is the distance along the generatrix, s the distance along
the director curve, and r the mean radius of curvature of the cross-
section of the cylinder. The complete systems of equations defining
the elastic equilibrium of the shell can then, in the notation of Love
(reference 3), be written as:

A. The Equations of Equilibrium

oT; 39Sy oG, OHp
S "3 *T =0 3¢ T " ML=0
H OH oG
Sl+_> <2+%?§>”Y=° i
T OoN oN. H
—g-l-yl_ ~a—2+rZ—O Sl+S2+—r-§=O

where R is a nondimensional magnitude equal to the ratio of the radius
of curvature of the cross-section Rp +to its mean value r. (For con-
venience of presentation the second equation in these relations is pres-
ented in an unusual form by the formal introduction of the torsional
moment Ho.)

B. The Equations of Continuity of the Deformations

= 5Lt - R B !

(The shear deformation we shall denote, in contrast to Love, by 7.)
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The number of continuity equations has, by introducing the magni-
tudes §;, {, been increased to five, although actually they should
be three in number, since they are derived from the Codacci-Gauss equa-
tions. "These relstions are reduced to the usual form if  {y and- Cg
are eliminated from the first three equations with the aid of the fol-
lowing two. It is in such form of a variation of the Codacci-Gauss
relations that they have first been derived by us for the general case
(reference 4). '

C. Elasticity Relations

2EhT] El = Tl - UT2 2EhT] €2 = T2 - UTl (1-1)
oFhn % = -(1 + 0)Sp (1.2)
> 2
01 = -———— 28mn3(xy + oK), G2 = -————sc 2ER3(sp + 0kp)  (1.3)
3(1 - o®) 3(1 - ¢°)
Hy = -H, = 'y oEhy S (1.1)
17 ™2 ~31+ qj nT .

where 2hn(B) denotes the variasble thickness of the wall of the shell,
2h being a constant equal to the mean thickness.

In the elasticity relations the forcg 87 does not enter; it is

assumed that it is connected with Sy and Hp by the six equations of
equilibrium.

D. Geometrical Relations

1 du ;v W 1/ou . oV
1=%% €2=r5'a'§> 7 =23 * % (1.3)
I - " SR W - o S 1 .=_1..5(5W+l’> (1.6)
171232 2" 232 OBR 2 a\3f R .
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2. AUXILIARY RELATIONS

In order not to interrupt the discussion in what follows, we shall
introduce certain transformations.

1. If the components of the tangential deformation €., €5, 7
are assumed known, there is no difficulty in determining the forces,
moments, and components of the flexural deformation kj, Ko, T:
with the aid of the three last equations of equilibrium, the continuity
equations, and the elasticity relations, we obtain

-
Tl _—_n_la‘fi:ho»2 (Gl +0'€2) T2 =—-3—12Eh02 (Ga +0'€1) SE —-(—L)-gEEO' ;
3(d y Oe (%1 3y
rﬁ:R‘&i(B—BE‘&‘) FB(&—‘BT,,"Q‘)
o€
rT = -fL(gB—]:)dCL + L(7) - Ba-&gﬂ R€2
Bel
fdafg—é d.a.+fa—L(7)d.u.— 5 Rep
2.3 de Jde *
1. _ _ heq a< 2) a( 1 Bﬁ> - (2.1)
=@ ==~
r U1 3(1_0){ B‘T’ RS\ S "2 2/ *
o
e T (o oe + [ & 1000 - £ ne |
' 1h2n3 de 2
%G2=--3————"]—>-§L[ J e fa <—6%>da +f63_ L(’r*)da.—%;-éReaJ+
3(d y* O% 3(06*
U[Ra—a(a—s?- 8a> Ra—a( 3 g?)}
_ ]
1 1 hq3 dex¥
R SZIJT“{ fL(*a‘rf)“”"*"'é“é‘“e}
»

Continued on next page
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N. —__ hPn3 faE (a 7 5'52*) 2 [31* 7*) ]
1=" (l_ce)reLaas-e "'ScT'R&TB"T' 3a? *

[‘ Ik L@ﬁ“)d“ " 55T - af;e 362*]}
Ny =-———575 3( {[ \jpda\jp (aE >da +\]F5— 1 L(7*)da -

d 3R d (3 y*  dep¥ 3 [der* ay*ﬂ
3p 1 §B§R€*J+°3§n3[R§&<BT3?'_B? RIS TSt

\(2.1)

231 - o>{- L(-aa%f) ¢ 2 L) - é—eg *]}

- .z
In the above equations (2.1) there has been set for briefness
€% = 2Ehey €x* = 2Bhe, 7% = ZEhy (2.2)
and by L we understand the linear differential operator
) ) 1
. L=35R35p +'iI (2.3)
2. In what follows a large part will be played by the linear
differential equation
) e )
3 L(g% =0 (2.%)

where L is defined by equation (2.3). The solution of equation (2.4)
is based on the fact that if in the operator L a change is made in
the independent variables by the formula -

- 48
dx = R

it assumes the form:

wna

(ﬂ— + 1) (2.5)
ax :
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Hence the general integral of equation (2.4) will be

p(a,B) = A1(a) + Ag(a)f‘ + 'A3(a.)% + Au(a.)-(‘:—e (2.6)

where

X = rd[\cos X dp y = rd[\sin X dp o= rd/\(x sin X - y cos X)dB

and A,, Ay, A3, A) are arbitrary functions of integration. The

geometrical meaning of the magnitudes X, x, ¥y, ® 1is obvious. If
we refer the cross-section of the shell to a cartesian system of
coordinates OXY, then ¥ may be interpreted as the angle between the
tangent to the contour of the cross-section and the X-axis; x and y
will be equal to the abscissa and ordinate of the point considered and
& represents the so-called sectorial area, that is, the area of the
sector bounded by the contour of the cross-section and two rays issuing
from an arbitrary point taken outside the contour (sectorial center).
These two straight lines determine on the contour of the cross-section
two points, one of which (the origin from which the computation is made)
may be arbitrarily chosen.

We introduce the notation

Bo Bo Bo
Qhr\/p xn 4B = Sy Ehrk/p yn dB = Sy 2hr\/p wn dp = By
0 0 0

Il
H
]
H

Bo By
ohr f x°n ap y ohr f v2n ap
0 0

Bo Bo ,
2hr\/p n dB 2hr\/p o°n dp
0 0

Bo Bo +Bo .
2hrk/; xyn dB = IXy 2hrk/; xon dB = I 2hr yon dB = Iyw

[
|
I
H
g

(2.7)

Here and in what follows B =0 and B = By are the equations of two
straight edges of the shell.
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The physical meaning of the magnitudes introduced is the following:
F 1is the cross-sectional area of the shell, S,, Sy, S, are the

static moments relative to the axes X and Y and the sectorial static

moment, Iy, Iy, Tw "are the moments of inertia relative to the-axes X
and Y and the sectorial moment Of inertia, and Ix is the polar moment
of inertia relative to the axes XY; the magnitudes Iyxy, Iyp need not

be given any special name; for us it is of importance only that under
certain conditions they become zero.

To a transfer of the origin of coordinates and a rotation of the
axes of the cartesian system of coordinates, and to a change of the
sectorial center and origin of sectorial areas, there correspond various
changes of the arbitrary functions of Integration A;, Ap, A3, A),

in equation (2.6). These may be made use of in order to transform in
the required manner the solution (2.6).

The further equations assume the most compact form if we make the
assumptions that (a) the origin of coordinates OXY coincides with the
center of gravity of the cross-section of the shell; (b) the coordinate
axes coincide with the principal directions of the cross-sections;

(c) the flexural center is taken as the sectorial center; (d) the point
from which the sectorial areas computed coincides with the sectorial
zero point.

From conditions (a) and (b) there follow the well known relations:

S = By = Iy, = O (2.8)

Conditions (c) and (d), as shown in the monograph (reference 1), are
equivalent to the relations

Iyw = Iyp = 8y = O (2.9)

VWriting equations (2.8) and (2.9) in explicit form we obtain

Bop - o Bo a
f xnds=f ynda=f wn @B = 0
0 0 o - _

' L
Bo Bo Bo (2.10)
f mdB=f xwn 4B = yo dB = O
0 0 0 y
This means that the.fbfm of the 1ﬁtegra1w(2.6)'fhﬁs-chésen is charac-
terized by the fact that it i1s a linear combination of four particular

integrals. 1, x, Yy, ® having the property of being mutually
orthogonal with weight 7.
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3. Let us consider the problem of finding stress states of the
cylindrical shell such that the forces, moments, and deformations depend
only on the variable PB. Neglecting in the equations of equilibrium and
continuity of deformations the terms containing derivatives with respect
to a and adjoining to the obtained equations the elasticity relations
we obtain the following system of equations

oy Ny Ty,  ONp 3G,
6-6— - —f = -TrY ® +YB— = -7 -w + I’N2 =0 (2-11)
ok ¢ K 18 Oe
1 1 1 1 1
w-y:O i-'f-B:O —B——+I‘Cl—o ' (2.12)
832
B—B— = rx (2'13)
oT
SE =0 (2.14)
T, = zg%ggé(el + Oep) Tp = 32%235(62 + 0€q) 2Ehn % = -(1 + 0)sp
3.3 3.3
Gy =- 2Eh srixy + okp) Gp =- 221 5ok + o)
3(1 - %) 3(1 - o)
oERSn3
Hl = -H2 =§(-i-—+ﬂg)— T
8. +8 -_Eg N. = 1 EEQ g -1 9 A
1 2 TR 1 rop “TOoB2
(2.15)

The integration of the complete system of equations is in the
given case naturally broken up into the integration of the subsystems
(2.11), (2.12), (2.13), (2.14) by which the magnitudes (T2, N2, G2),
(ky, €1, &1)s Sp, T are determined. The remaining unknowns are
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obtained with the aid of equations (2.15) whose integration is not for
the present required.

Equations (2.11) possess a -simple physical meaning. They represent
the static equations of an arch of unit width cut out from the shell

by two cross-sections.

By eliminating the forces To and Np from this system we obtain

the equation
BGE 2( ORZ
I.QTB-—)'F r <FB—- - ) =0

whose integration was considered above. Thus

3G, .
X 1 V2 cos X sin X
G’Q = Al + A2 ; + A3 % + G2* N2 = —1: —B—B = A2 + Aq < + N2*
T, = -R .a_N_E - rRZ = A sin X _ A, SOS X T % (2.16)
op 27 r 37 ¢

where GE*’ T2*, N2* are particular integrals of the system (2.11).

The structure of the left sides of equations (2.12) accurately
repeats the structure of the left sides of equations (2.11). By
analogy we therefore obtain

€ B, +B + B, Y t _ cos X sin X
1~ "1 2r 3r 1 o) T 3 -
X1 = Bp Sn; X _ py o8 X (2.17)
Equations (2.13) and (2.14) give
Sg=ertdB.+Cl. }=¢2

The remaining unknowns are determined from equations (2.15) with-
out integration so that @he complete solution depends on eight constants.
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3. THE PARTICULAR INTEGRAL DUE TO A TRANSVERSE LOAD

- Let the rod be acted on by a transverse load R similar over all
cross-sections such that its components are of the form :

X=0 Y = &a)p(B) z = &(a)q(B) (3.1)

(p and q represent the components of the external load at the cross-
section where € =1 and in what follows it will always be assumed that

this section is a = 0).

We shall choose the law of load distribution such that the
particular integral of the equdation of the rod may with sufficient
accuracy be obtained in the simplest form, that is, by the zero moment
theory, with the values of the forces and moments at the longitudinal
edges negligibly small or equal to zero.

The static equations of the zero moment theory can be obtained,
as is known, by taking the first, second, third, and sixth equations
of equilibrium and setting the moments and shearing forces in them
equal to zero. We shall proceed somewhat differently, namely we shall
set in the second and third equations

N H ON ON.
2 .9 H2 1 2 _
'ﬁ*&?ﬁ’o E"“Bﬁ"o

and assume T;, Top, Sl + Hg/rR, and Sp as unknown. For these magni--

tudes there is obtained a complete system of four equations with four
unknowns, the integration of which gives

T1=+rfdaf§é<Y-g—1;—Z-)da=—rB§B-[§é(Rq)-p]fdafgd:

'
g

sl+§-§—-rf< -?;é—m)da=+r£é(Rq) -fEda.
r (3.2)

1
d

Sa

+r f(Y - g—é—-nz)d.a = -réaﬁ(Rq) -fé do

-rRq &

e
n
il
o

o)

N
]
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In order that this equation satisfy the condition of absence of
the normal forces To at the longitudinal edges we shall choose the
load distribution law in the cross-section such that q(B) passes
through zero for B =0 and B = By.

Let us evaluate the accuracy of the solution (3.2). For this
purpose, assuming T;, Tp, So» given by equations (3.2) we determine
with the aid of the elasticity relations and the relations (2.1) the
moments and shearing forces. There may then be found also the
expressions

. N2 a H2 \ BN]_ BNQ
V=" *% = ' =-3a " 3p

which were assumed above to be equal to zero.

If Y' and Z' are assumed as the components of a certain
fictitious load R', it may be stated that for a shell subject to the
action of the load R + R' solution (3.2) will be an accurate particu-
lar integral. This makes possible a rough estimate of the error of the
solution (3.2) where it is necessary to remember that a thin-walled rod
is a long shell for which the relative length 1 =,L/r (L is the
absolute length of the shell) is a large magnitude.

From this it follows that the maximum values of the integrals with
respect to a of the function &(a) will, generally speaking, con-
siderably exceed the values of the original functions. Thus, for
example, in the most unfavorable from this viewpoint, but practically
most important case, when & = const

n
supu/\. . .Jfé(obdnp = %T sup £(a) (3.3)

Let us therefore write down the equations expressing the moments
and the shearing forces, arranging the terms in descending order of
integration. GStarting from equation (3.2) and meking use of the
relations of elasticity and the auxiliary equations (2.1), we obtain




1k
g =- n°
r 3(1-:‘:2)r2
5 d D
o EELB_E
R£;B<
OB TISE_I
2
1 h 3] 9
_G— = - T] - L
T 2 3(1 - )2 {BE oB
3 d R
“BLF
@ 19
URaB TIFB-
;BHI__laﬁz_
rdoa rda
aN1= 123
o 3(1-02)r[
2
wp -2 [3 .33 2

.NACA TM 1322
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The dots in this equation indicate terms not required for what follows
that do not contain integrals of £ with respect to « and in place
-of Hj, Hp and Nj their derivatives with respect to a are given
since only -the- latter are required for our purpose.

Upon examination of these equations we see that the maximum values
of the components of the fictitious loads Y' and Z' will decrease
with the thickness of the shell as he/r2 and, if the least favorable
case (3.3) is taken, will increase with increase of its relative length

roughly as Zu/hl. Hence, if the coefficlents in front of the integrals
of greatest multiplicity are neither accurately nor approximately equal
to zero, the error of the solution (3.2) can be small only in the case
that

SR

which for such a long shell as a thin-walled rod fails entirely to
correspond to actual conditions.

The zero moment theory as a method of determining the particular
integrals in rods is therefore in the general case not suitable. We
shall now seek transverse loads Rj] for which these defects of the
zero moment theory are eliminated. This can occur only when the coef-
ficients of the integrals of maximum multiplicity in the expressions
for the components of the fictitious load become zero. It is easily
seen that the required result will be obtained if

3 - 3 1/3p  Frq) _
FBLFB—T]%E 3;32)_0
or, what is equivalent,
d d 129 dRZ) _
35 " 3B e 6E<Y “Sa/ = O (3-5)

At the same time the coefficients of the integrals of maximum
multiplicity vanish not only in the expressions for the components of
the fictitious load, which increases the accuracy of the solution (3.2),
but also in the expressions for all the moments and shearing forces,
‘which brings about the approximate satisfying of the condition of the
absence of stresses on the straight edges of the shell.
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Integrating with the aid of the results of equation (3.5), sec-
tion 2, we obtain .

= s (3.6)

In order that the straight edges be free from shearing forces it
is necessary, as is shown by (3.2), to put

ORZ oRZ
@-WLrP-WL§°

This, by virtue of the conditions of orthogonality (2.10), gives
Cl=C5=

There remain three constants which can be chosen such that the
required load R; at each cross-section of the shell is statically
equivalent to the given load R. We have

u/;ﬁo < - %lg—z)dx = &a)Py /;BO ( - g%z)dy = Halpy

foeo ( - %g—z)&n = )M (3.7)

where Py, Py, and M are the forces per unit length acting in the

direction of the axes X and Y and the torsional moment to which the
load R 1s reduced at the cross-section a = O.

Substituting in equation (3.7) the value Y - ORZ/dB from equa-
tion (3.6) we obtain for example

Bo SRZ fBo f 3 Bo fB
P, = Y - dx = — dx dag + dx ag +
* fo ( B_B—> “ fo o T
Cl‘. fBO ax fB on ap
r2Jg 0
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Integration by parts gives

Ce B B B=B0
Px=|:?xf x'r]d,B+—xf y‘l]dB+—-xf (DT]d.B} -
(0]

B=0

c Bo c, [Po
Ca 170 20 ap - 3 dB-_‘-*j

r Jo 0

Because of equations (2.10) there remains on the right side only the
coefficient of Co, whence for Cop, and similarly for 03 and C}, ve

have

' 2P 2
2hr 2hr-P ohr3;
Co =___T_;§ C3 =-._T_4X Cy =- r-M
y X In

where Iy, Iy, I,, are the moments of inertia determined by (2.7).
Hence '

B B
ORZ 2hr 2hr
Y-rﬁ g()[y PL xT\dB+——ny y‘qd.B+ f U-\T]d.B:]

(3.8)

Equations (3.2) assume the form
Ho B P B M B -
—= = -8 =2hr2F5f a —Xf a ——f d.:l £ 4
51 + R 2 Ty, X B+IXOy'nB+IwownB a

o _Px P
Ty = -2hr n{I—x + y+—m]fdaf§ da Ty = -RZ (3.9)
1y

The elementary solution constructed in this manner corresponds not
to the given load R but to the load R; statically equivalent to it
at each cross-section. The shape of the load R3] is not completely

determined. Between its two components Y and Z there has been established

only the relation (3.8). In order to proceed further we evaluate the
accuracy of the solution (3,9). For this it is necessary to turn to
equations (3.4) in which, on account of the restrictions imposed on the

functions p(B) and q(B), it is necessary to assume all the coefficlents
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in front of the quadruple integrals of £ equal to zero. Repeating
the considerations applied in evaluating the accuracy of the solu-
tion (3.2) we arrive at the result that the integral (3.9) will have
an acceptable accuracy if ' '

no

-

5-<<1

WDIU

An inequality of this type, as we shall see below, is characteristic
of short rods but cannot be used for rods of medium size.

By a suitable choice of the remaining as yet undetermined com-
ponent Z a further increase in accuracy may be attained. For this
purpose it is necessary that that part of the fictitious load which
depends on the double integrals of t(a) be self-balanced at each
cross-section. This principal part of the fictitious load may then be
added to the self-balanced part of the load R which we must still
consider. We shall not dwell on the mathematical details of this
operation. We shall only remark that, however, the component Z of the
load R3] is chosen in the elementary solution (3.9), the fundamental
forces Ty, Sq, and S, for the thin-walled rod remain the same. For
short rods it is not necessary to render more accurate the particular
integral and we can therefore set Z = 0.

Thus the first half of the problem of the construction of a parti-
cular integral has been solved, namely from the general arbitary
load R there is separated out the statically unbalanced part R; for
which the elementary solution (3.9) is given. The second half of the
problem consists in the investigation of the statically balanced part
of the load Rp = R - Rj.

Let the shell be acted upon at each cross-section by the balanced
load Ro with components of the form (3.1). It is assumed that it is
known, that is, we have already chosen in a definite manner the load Ry
from the considerations given above. We shall seek to obtain those
conditions under which every transverse strip of unit width of the shell
works as an arch, as a result of which the stresses in the cross-sections
will have a secondary character as compared with the stresses arising in
the longitudinal sections.

It is easily seen that the second, third, and fifth equations of
equilibrium of the cylindrical shell go over into the statical equations
of an arch if, and only if, in the first of them the terms with deriva-
tives with respect to the variable a are rejected, that is, if
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BNl ) le BH]_.
3¢ _ oa  da

=0 (3.10)

We then arrive at the eqﬁétioﬁs (2.11) from which the transverse forces
and moments arising in the shell can be determined. According to equa-
tion (2.16) an integral of this system will be

: X cos X sin X
Gp = Ay + Ap = + A3-¥ + Go* Np = Ap =55 + Ay 22— + Wp*
_ sin X cos X
T2 = +A2 - - A3 = + T2* (3.11)

where it is now necessary to assume that A,, Ao, A3 are functions

of the variable o since we do not now make use of the assumption
that To, Gop, No do not depend on a.

Since the operator Z does not contain the variable o explicitly,
1ts particular integral may be obtained in the same form in which the
components of the external load are given, that is

Go* = E(a)gs*(B) No* = E(a)no*(B) To% = E(a)to*(B) (3.12)

The arbitrary functions of integration Aj, Ao, A3 entering the

general integral determine the boundary values of the forces and
moments To, No, Gp. These magnitudes may be considered as the end
transverse load and, therefore, imposing on it the condition that it
preserve similarity at all cross sectlions we obtain

Ay = alﬁ(a) A, = azé(a) Az = a3§(a) (3.13)

vwhere aq, ap, ag are constants.

Since the arch strip is not acted upon by other than the external
surface and end loads, it is evident that for any choice of the con-
stants a;, ao, a3 the system of external loads, end forces, and .

- moments will be in equilibrium at any cross section. We thus arrive at a
certain generalization of the concept of a self-balanced load in which
there is now included the end as well as the surface forces.



20 NACA T™ 1322
From equations (3.11), (3.12), (3.13) there follows

Gy = &(a)es(B) N, = E(a)n,(B) T, = &(a)ty(B) (3.14)

On the basis of these relations it is possible to show that £(a) must
be a linear function of the variable a«. From the elasticity relations,
from the sixth equation of equilibrium, and equations (3.10) we have

3
%=%§=§&2=o (3.15)

Hence differentiating with respect to a the first equation of
continuity of the deformations and the fourth equilibrium equation we
obtain

From the elasticity relations there is then obtained

Benl 52G2
—-2— = ——2—— =0
o da

whence on account of equation (3.14)

Thus in a thin-walled rod each cross section under a self-balanced load
can work as an arch only in the case where the load varies linearly
over the length of the rod.

This condition is not only necessary but also sufficient, that is,
for such load the problem of determining the forces, moments, and
deformations in such a manner that all equations of equilibrium and
continuity of deformations and all elasticity relations are satisfied
may be solved completely.
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In order to prove this we shall start from the equations of con-
tinuity of deformations. We shall differentiate the fourth of these
equations with respect to «a. If we take into account equation (3.15)
this gives

atp
S2 -

The second, third, and fifth continuity equations then assume the form

aKl Cl Kl a§1 Bel
W - ? —, = -B-- r = rCl (3'16)

We arrived at the system (2.12) integrated in the preceding section.
Hence according to (2.17) we have

_ X Yy _ cos X sin X
€1 =By +By 7 + B3 %L & =By — B3 =%
. . y
ky = Bp 2= X _ By == (3.17)

Since in deriving (3.17) it was not assumed that Cl, k1, and €1 were
functions only of B, it is necessary to assume that Bj, Bp, and B3

are functions of «. In order not to violate the previously obtained
relations they must be chosen linear.

We may now assume as known two groups of magnitudes: Top, No, Go

uniquely determined by equations (2.11) and the boundary conditions on
the straight edges, and ¢, Ql, k1 determined with an accuracy up
to three linear functions of a. The remaining desired magnltudes can
be obtained in an elementary fashion with the aid of the elasticity
relations, the first and sixth equations of equilibrium and the first
equation of continuity of deformations. We obtain

| B de B 3T,
T1 = 2Ehngl»+ 0T2 82 = 2Ehk/; N 3q dp + o o 5—— ap + Bh

, 3.3 B ok
By = Ep = ~(1 - o) fo i3 9 - o 0 [T an 1 ny

He  2En3
8 = -5 - R Gy =-73 n3kp + a6y (3.18)

- where B)' and :35 .are constants.
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There remain undetermined eight arbitrary constants: two in each
of the linear functions By, By, B3 -and in addition B)'. and B5'.

These counstants can be disposed of in such manner that no longitudinal
forces are applied at the straight edges and the forces in the cross-
sections constitute a self-balanced system of forces, that is, so that
the required particular integral.is not subjected to stress states
corresponding to tension, bending, and torsion of the shell by external
forces applied to its transverse ends. Since the shell as a whole is
in equilibrium because the equations of equilibrium are satisfied, it
is sufficient to require that the system of forces and moments applied
to the cross~section a = O be self-balanced. This gives six rela-
tions. Adding the condition

Sp =0 0

S =
B=0 2| B=Rg
we obtain eight equations for the eight arbitrary constants.

If the transverse self-balanced load in the longitudinal direction
is not a linear function, it can give rise to considerable stresses in
the transverse sections (in comparison with the stresses in the
longitudinal sections).

When the load in the longitudinal direction has a broken line
character, the shell must be divided into parts and the obtained results
applied to each of them. It should be remembered, however, that in the
neighborhood of sections where the load is discontinuous the stress
state will be impaired by the effect of the coupling conditions of the
parts of the shell so that such sections should not be too frequent.

4. RATE OF DAMPING OF THE INTEGRALS OF THE HOMOGENEOUS EQUATIONS

The obJject of the present section is to seek to obtain particular
integrals of the homogeneous equations of a cylindrical shell which
correspond to the stress states with minimum damping (increase) with
respect to the variable o. The equations of an arbitrary cylindrical
shell do not contain variable coefficients with respect to the param-
eter a and this system can be reduced to a single equation. In
practice such an operation is very complicated but it is not difficult
to see, without going into explanations, that the form of this equation

will be

% % o r2 3k 5%
S +L2(—a—az> +L)_;_<a—'a‘n +HE$E+L6—BZE +L8((D) =0 (,-I».l)
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where the Lj terms are the linear differential operators relative to
the variable B, the order of which is equal to their index, n is a
known function of B, ¢ is a function of the stress in terms of which
“the forces and moments are expressed with the aid of certain differen-
tial operations. The operators Lj and the coefficient n may depend
on h/r but for h/r-—f>0 they remain restricted.

We shall determine the slowly decreasing (increasing) function ¢
in the direction of the varisble « by the condition that its deriva-
tive with respect to a 1is considerably less than the function itself.
Mathematically this may be expressed by the equation

g0 W@ )0

where k is such a small number that the absolute values of the func-
tion k¥(a,B) and its derivatives are much smaller than unity.

Integrating this equation we obtain

o = X(B)expk]pkw da
Then

2
0 _ [,2,2 oV
;E"(” ”‘sa)q’
[+ 4

For OV/dx # 0 and for sufficiently small k we may write
approximately the equation

3—8 ksicp

which shows that the first derivative will not be a slowly decreasing

(increasing) function. But the derivatives of ¢ with respect to a

enter the expressions for the forces and moments and in order that the
latter be slowly decreasing (increasing) functions it is necessary to

impose the requirement

Boo or v-up)
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It follows that of all solutions of equation (4.1) it is sufficient to
consider the integrals of the form .

0 - Xip(p) (1.2)

since only by these will the slowing decreasing (increasing) stress
states be determined. For ¢ +there is then obtained the equation

1B + Or(p) + k'L () + a)}j—z k' + k2Lg(9) + Lg(®) = 0 (4.3)

The constant number k is left arbitrary. This constant will deter-
mine the character of the decrease of the required magnitudes with
respect to the variable «.

For a given k, equation (4.3) determines eight linearly inde-
pendent solutions for ¢. This means that a given character of the
decrease (increase) can take place only if in the transverse directions
the required magnitudes are distributed in one of eight definite ways.

Since we are considering thin shells it should be remembered
that h/r is small. Making use of this fact we focus our attention
on the asymmetrical properties of the integrals of equation (h.3), that
is, on the properties for h/r as small as we please.

We define a new magnitude k by the equation:

- @

and shall call it the damping coefficient. Equation (4.3) then assumes
the form

2 oo &) 1w + @) 1@ « @) o

2
()" 1gto) + 1g(e) = 0 (k1)

It is necessary further to consider separately three cases:

(a) k <O (b) 0 gk g1/2 (c) k >1/2
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For k <0 there will be a rapid decrease (increase) which will
be more intense the thinner the shell. This stress state (end effect)
is of no interest to us.

In cases (b) and (c) the intensity of the decrease (increase) will
decrease with decreasing thickness of the shell. The integrals of
equation (4.4) for h/r —->0 will asymptotlcally approach in case (b)
the integrals of the equation

-2
Lg(e) + u(8)(3) @ =0  (4.5)

and in case (c) the integrals of the equation
Lg(p) =0 (k.6)

The principal difference between these two cases lies in the
circumstance that as long as & falls in the interval (b) the law of
change of the required forces over the cross-section depends on k
whereas when & falls in the interval (c) the law stops changing. The
physical meaning of this fact will become clear if we agree on how to
delimit the local and principal stress states.

In the problem of the computation of thin-walled rods there enters
only the determination of the stresses at a sufficient distance from
the ends. The stress states which damp out without reaching this zone
must be considered as local end stresses and ignored in the computation.
From this point of view it is possible for each rod-shell, when its
dimensions are given, to determine a number k7 such that:

(a) The integral of equation (4.4) for « < ky will give the
local stress states;

(b) the integrals of equation (4.4) for k > Ky will give the
principal stress state which is the problem to be solved.

It is evident that the number «] for a given relative thickness
of the shell h/r and for given requirements as to the accuracy of the
computation is determined by the length of the shell. In this connec-
tion shells may be divided as regards their length into two classes:

(1) shells for which k; %, (2) shells for which «j >-21-.

The difference between them consists in the fact that in shells
of the second kind the number of principal stress states differing
among each other by the law of variation over the cross-section does
not exceed eight whereas for shells of the first kind there can be an
infinite number of such general stress states. :
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The theory of solid rods operates with a finite number of general
stress states differing from one another in the law of stress distribu-
tion over the cross-sections (the stress states corresponding to
bending, elongation, and torsion of the rod). The theory of thin-
walled rods, in generalizing the theory of solid rods, may be con-
structed evidently only for shells of the second kind. Shells of the
first kind must be referred to the type of long shells, to the compu-
tation of which there may be applied the method of V. Z. Vlasov (refer-
ence 5) or V. V. Novozhilov (reference 6). This determines the lower
limit for the relative length of g thin-walled rod. The shell may be
considered as a rod only in the case where

1
—k1
e2 <1 for k = <%)2

If this inequality is not satisfied the law of distribution of
forces and moments of the principal stress state over the cross-section
will be determined by equation (L4.5). Space does not permit dwelling
on the problem of how the principal stress state 1s altered in this
case. We shall therefore restrict ourselves to the statement that the
above inequality estimates the minimum length of the shell to which the
theory of thin-walled rods is entirely applicable without any
distortions.

We shall turn to the investigation of the stress states with the
damping coefficient x > 1/2 and consider first the limiting case
kK =owo, The function ¢ then degenerates into a function which is
linear in the variable a, and the corresponding stress state will like-
wise be linear in a (it is assumed that all the required magnitudes
are determined in terms of ¢ without the aid of integration). Such
stress state linear with respect to o has already been obtained in
section 3 in considering the transverse load. It is determined by
equations (3.11), (3.17), and (3.18) in which the load terms, indicated
by asterisks, must be taken equal to zero. In these relations the
arbitrary elements are:

(a) the functions A;, Ao, A3 linear in a in the expressions
for T2 ’ N2 > G2

(b) the functions By, By, By linear in a in the expressions
for €1» Ql, K1

(c) the constants Bh' and B_' entering, besides the above
linear functions, in the-expressiong for &8s, By, Hs.

In section 3 it was shown that the functions Ay, Ay, A
correspond to the shell loaded by forces and moments along the

3
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longitudinal edges. This type of stress state may be referred to a
particular integral and it may be assumed that A; = Ap = A3 = 0. From

this it follows that T, = Gy, = Ny = 0. If, assuming T, ='0, we
require additionally that there be no shearing forces Sp -at the end
of the shell we obtain with the aid of equations (3.17) and (3.18)

.82|B=o = ?“' =0

4B, Po a8, rBo dB, [ Po
1 2 X 3
SelB =2Ehda,j; “dB"da_/; T Nab+ 35 /;_ %“dB}J'

The constant B5l gives a stress state in which only the torsional

moments and the shearing force S; will be different from zero. To
this, within the 1limits of accuracy of the theory of shells there cor-
responds the Saint-Venant torsion of a thin-walled rod. There remain
arbitrary the functions B, Bp, B3. Equations (3.17) and (3.18)

show that the stress state determined by them is characterized by the
fact that the normal stresses in the cross-sections will be subJject to
the so-called law of the plane, that 1s, the shell behaves like a rod
subjected to the action of bending and tension.

It follows that sufficiently long thin-walled rods do not in that
case differ in thelr behavior from solid rods and it is therefore neces-
sary to focus our attention on rods which differ along their léngth
both from shells and from solid rods.

In order to cérry out this analysis we turn our attention to the
fact that equation (4.6) or, what is equivalent, equation

Lg(e) = O 7 (%.7)

may be obtained in a purely formal manner on assuming that ¢ 1is a
function only of B although we shall also study such integrals of
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equation (4.7) which depend on a. With this assumption we arrive at
those results which were obtained in section 2 in seeking to obtain a
stress state of the shell which did not depend on a.

It may be asserted that among the slowly damping stress states of
a cylindrical shell there are

(a) those in which the magnitudes T No, G are determined by
2 2 2
the system (2.11) if we put in it Y =2 = 0;

(b) those in which k3, ¢y, ¢ are determined by the system (2.12);

(c) those in which the magnitude So 1is determined by equation (2.13)
if we put in it X = 0;

(d) those in which the magnitude T 1is determined by equation (2.14).

The physical sense of the stress states of the types (a) and (c¢)
is clear. The first of them corresponds to the loading of the shell by
transverse forces and moments along the straight edges. As they have
already been considered in studying the particular integrals of the
transverse loads they are of no interest. The stress states of the
type (¢) correspond to the loading of the shell by longitudinal forces
along the straight edges. These likewise need not be considered since
in what follows they will automatically be included in stress states of

the type (b).

There remain to be investigated the nondamping integrals of the
type (b) and (d). Only these may be found suitable for the construction
of a theory of thin-walled rods, that is, they give stress states in
which the normal stresses in the cross-sections are essentially greater
than in the longitudinal sections. For this, in particular, it is
necessary that

T, > T, (4.8)

We shall make the assumption that condition (4.8) actually holds
for integrals of the type of (b) and (d). This assumption was proven
in section 5.

If equation (4.8) is taken into account there follows from rela-
tions (1.1)

Tl = 2Eh'q€l € = -0'€1 (’4--9)
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On the other hand, making use of the first equation of equilibrium and
the elasticity relation (1.2), we obtain

Sp = ; .a?} ag ZEh'q% = -(1 + c)j; Wl- ap (4.10)

Since we are immediately interested only in the slowly damping integrals
it is necessary to assume that each differentiation with respect to a
leads to an essential decrease of the differentiated function. From
this it follows that

d ¥ d€p
L <
3a2 €1 3 <1

and if the fourth equation of continuity is taken into account it is
necessary to add to these inequalitles the inequality

T K e

Re jecting in the second, third, and fourth equations of continuity of
deformations the magnitudes which are small by comparison with €; we
obtain

O b1 _ a1 ko, 9% !
¥ CF e ®OUW O O oTa (.11)

This system embraces both the integral of the type (b), which is’
obtained when one considers OT/da = 0, and the integrals of the
type (d) which are obtained if one assumes

recl@ L -ci(

Eliminating from equations (L4.11) the unknowvns &; and &5 we obtain
for determining ¢ the equation

de
d 1)=0

L<ae1) - —x¢'(a) (u
B/ < - a) or 35 L\3g7 .12)
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.5. ELEMENTARY SOLUTIONS OF THE HOMOGENEOUS EQUATIONS

The fundamental result of the preceding section is the derivation
of equation (4.12) by which the character of the change of deforma-
tion ¢3 in slowing damped stress states of a cylindrical shell of
arbitrary section is determined. Integrating this equation we obtain

X [6)]
€1*=2Eh€l=Al+A2;+A3‘¥+A)+;2‘ (5'1)

where Al, A2, A3, Ah are functions of a.

With the object of interpreting the meaning of the functions A,
Ao, A3, 4A), let us investigate in greater detail the corresponding

stress state. We shall maintain the above mentioned assumption that
the normal stresses in the cross-sections exceed in absolute value the
normal stresses in the longitudinal sections so that in particular
inequality (4.8) is satisfied and we shall bear in mind that all the
required magnitudes decrease slowly in the longitudinal direction and
as a result of this they decrease on differentiation and increase on
integration with respect to a.

The deformation ¢ is determined by equation (5.1). We shall
express the required magnitudes in terms of it. On the basis of
assumption (4.8) we shall assume that Ty may be neglected by com-
parison with T;. From the elasticity relations we then have

W
Ty = neg* = An + Ao % n o+ A3 % n+ Ah';é 1 €0 = -0€q (5.2)

The shearing force Sp and the deformation ® are determined from the
first equation of equilibrium and the elasticity relation (1.2)

de ¥ de
_ 1 . _ 21 + 0q) 1 1+0 , ,
Sp = | —5 N AR + A5 7 === faa nap - SEe= A5t (5.3)

where A5‘ is an arbitrary function of integration depending only on o
and decreasing, as also Ay, Ao, A3, A), on differentiation. It is

easily seen that with the aid of the function A5' we include in our
consideration the stress state of the type (c) omitted in section 4.



NACA T™ 1322 31

Further, if the components of the tangential deformation €y, ¢€o,
7 are known, it is possible with the aid of the relations (2.1) to
express the remaining unknown functions. '

.In these equations which we shall mske use of for estimating the
order of magnitude of the forces and moments special attention must be
paid to the components involving integration with respect to « because
they will increase together with the length of the shell. 1In connection
with this we observe that since ¢1* satisfies equation (4.13) and o
depends only on the derivatives of ¢e1*¥ and As with respect to «
the integrals are retained only in the expressions for Hy; and Hp.
Hence equations (2.1) may be briefly written as follows:

he

r 71 3(1 - 02)r2 1 r 72 3(1 - 02)r2 2
2 3 de . * 2 oh
1 _ 1 _ h™n f ( 1 > h 12
H, = H, = L da +
T 38 /% 301 - )2 o
2.3 . 2 oh
h h 12
= - Ajda
3(1 + 05r2f T - )R Sa
h2 Bnl

1n2n3 W2
N, = N, = Ay + ——2 __n, (5.4
1 3(1 - o®)r? da” 2731 + o) b 3(1 - 0®)r? 2

where gy, &, hyjp, 13, np denote certain functionals of €%

which can be written out easily if desired; it is important to note
that they are magnitudes of the same order as el*.

The latter unknowns Tp and Sj are obtained from the third and

slxth equations of equilibrium:

2 3 2 .H :
h' dy h' 2

T, =- R Ay + ————— S, + = -8 5.
2 3( + o) OB 4 31 - )2 1+ R 2 (5.5)
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Equations (5.4) and (5.5) show that the investigated solutions
actually give greater normal stresses in the cross sections than in the
longitudinal, as was postulated above.

The auxiliary relations (2.1) are derived without using the first
three equations of equilibrium. In determining Sp and To it was
necessary to resort to the first and third of. these equations. Hence
only the second equilibrium equation remained untouched. Substitution
in it of the obtained results gives

d Bo) , 9> (Mo 3 Hp) _
Fa<51+ﬁ)+BT'<‘ﬁ‘+§aﬁ - (>-6)

B 626 * 2 3 3 3
Y*=-] lndB—A"-—-—ll—-—( RB—TL+ET]3>A+
0 32 5 3( )reé'é B R in

(5.7

3(1 -~ 02)r2

The magnitude Y* may evidently be considered as a component of a
certain transverse tangential load which must be applied to the shell
in order that the required stress state could exist in it. The arbi-
trary functions Aj, Ap, A3, AL must be chosen such that this ficti-
tious load has the minimum effect on the magnitude and intensity of the
stresses in the cross-sections. On the basis of physical considerations
it may be stated that for this it is necessary to impose two conditions,
namely, that the fictitious load be self-balanced in all cross-sections
and that Y* pass through zero on the straight edges of the shell.

In violating the first condition in the cross-sections there
unavoidably arise equilibrating stresses. In violating the second
condition, as equations (3.2) show, there are applied to the straight
edges tangential forces which give rise to balanced stresses in the
cross-sections.

The self-equilibrium of the fictitious load is mathematically
expressed by the equations

+Bo Bo - Bo
/ Y*dx=f Y*dy=/ Y* & = 0
0 0 0
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These relations may be transformed by integration by parts. Taking
into account the fact that the fictitious load passes through zero on
_the straight edges of the shell, that is,

y* 80 = 0 Y B8, =0 (5.8)
We obtain
Po oyx Bo ay= Fo 3y
x dp =\/n y dap =\jp @wdB =0 (5.9)
s . B . 3
The five relations (5.8) and (5.9) give a system of equations from
which 44, Ap, . . ., A5 may be determined. We have
aY*=—T]<A"+A"§+A"-Z'f'Ah_"-ﬁ)- h2 Aﬁa(aR?E_'_
EB_ 1 2 r 3 r r2 3(1 + O')I'e B—BFB B

where

The magnitude K represents a linear combination of Aj and a certain
number of their derivatives with respect to a«a. With this in mind and
recalling that the system of functions (1, x, ¥y, ®) is a mutually
orthogonal one with weight 1 and making use of the notation (2.7) the
above system of equations may be written in the form

I 2 Bo T 3
'S0 W - Q19 oo’ 2 3
25 A 3(l+0)r2f0 XOBEER§%—+R7] dp A +

. (5
m;aikAk+... =0

Continued on next page
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Toy 12 o >33 a3 >
- Ayt o 2 .3
2hr3 4 3(1+0')r2k/0 m§B§BR§g_+Rn dB Ay +

2 [5
g(z—jhg§7;§[§;i aSkAk + . .ﬁj\ =0

. 2 3
" h o _ 0 2 3
-4 '—_‘—IFRSD'+“”| Ay +
> 3(1 + o)re|oB B R B=0 4

AL e
3(1 i 02)r - ahkAk « v .4 =0

(WS
—
!
\
o
Q no
n
SN
H
N
NS
" A\
|l
o
\J
=3
i
+
[l
(@)

(5.10)

The dots represent the terms containing the derivatives of Aj; they
Play a secondary part in comparison with A; since the latter by
assumption decrease on differentiation.
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Assuming it possible to reject these nonwritten out terms we
arrive at a system of linear equations with constant coefficients of
the tenth order. Its particular integrals will be functions of the

exp(i;ﬁ_%_a) (1=1,2,...5)

The magnitudes py which may be considered positive are entirely
determined by.the form of the cross-section of the shell and do not
depend on the ratio h/r.

We shall dwell on those solutions of the system (5.10) which are
obtained if the lower signs are chosen in the argument of the exponen-
tial function. They will evidently correspond to stress states with .
dle down with increasing «. .

On the shape of the cross-section of the shell there will to a
certain extent depend also the rate of damping of these solutions with
respect to the variable a. It is possible only to make the general
statement that the rate will decrease together with h/r. This is the
fundamental property of the slowly damping integrals (in the terminology
of the preceding section these integrals have the damping coefficient
kK =1).

Shells in which slowly damping stress states are to be considered
as the principal stress states will be denoted as rods of medium length.
Mathematically a rod of medium length is determined by the condition

Cl ey
Nl e

1, ex‘p[_-\;f) J <a (5.11)

where a 1is a number which does not differ greatly from 1 and D 1is
the greatest of the magnitudes py. This condition guarantees that
the solutions of the equation (5.10) and therefore their corresponding
stress states are not local, that is, are not damped out toward the
center sections of the shell.

In the preceding section it was shown that starting with a suffi-
ciently large relative length the shell, in the character of its
principal stress state, ceases to differ from a solid rod. Such a
shell we shall call a long rod. Evidently it does not require special
consideration. In the interval between short and long rods there must

"be a rod of medium length which is characterized in that the principal
stress state is transitional from the one considered in this section
to the one which takes place in the solid rod. The solutions of
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type (b) do not here undergo essential changes because they correspond
to the cases where the stresses in the cross-sections of the shell obey
the law of the plane and such solutions hold also for &k = . The
limiting transition reduces to the case where the exponential law of
change of the required magnitudes in the longitudinal direction
degenerates into a linear law. In contrast to this the solution of

the type (d) changes radically. This solution goes over evidently

into that integral of the limiting system (at k = =) of equations to
which corresponds the Saint-Venant torsion of the shell

It will be shown below that in a short rod Hl/r and Hg/r in
absolute values are less than 87 and So. Hence it may be said that
in a rod of medium length there occurs a transition from the principal

stress state in which the magnitudes lHlL/% and \HQL/r are less
than 'Sll and {sef to the principal stress state in which lHlb/f
and IHEL/r are commensurable with ISl|.

The construction of a theory of thin-walled rods of medium length
and the establishing of the corresponding limits of the relative length
of the shell is based on the necessity for a more detailed qualitative
investigation of the system (5.10). It may be remarked that in the
theory proposed by V. Z. Vlasov (reference 1) the problem of shells of
medium length, if expressed in our terminology, was solved by replacing
the system (5.10) by the approximate equations:

A" = A" = A" =0 §E@ A" - GI;A), =0 (5.12)
1 T Ap = A3 = 2 Ah - Glghy = >-

vhere the latter relation was obtained from the condition of equilib-
rium of the moments of the shearing forces S7 (the first component
of the left side) and of the torsional moments Hy (second component) .

This evidently presupposes that IHll/r and lSli are comparable in
magnitude as should be the case in a rod of medium length.

In addition to the fact that the passage from (5.10) to (5.12) is
not clear, this point in the theory of Vlasov is doubtful because on
the one hand he proposes the comparability of |H1|/% and |Sll and

on the other hand there is assumed the law of conjugate tangential
forces which under these conditions stands in evident contradiction to
the six equations of equilibrium.
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The further discussion refers to the theory of short rods. Their
relative length is restricted by the inequality (5.11) and depends not
only on h/r but to some extent also on the geometrical shape of the

. cross-section since the magnitude P enters in (5.11).

The solution of the system (5.10) for such a rod may be simplified
if the inequality (5.11) is somewhat strengthened and ﬁh/r taken to
be so small that in the interval (0,1) the function exp(Pah/r) may
with sufficient accuracy be approximated by a linear function, that is,
if inequality (5.11) is replaced by the inequality:

=2, 2.2

pfhz_z« L
2r

The system (5.10) then reduces to the form

A]_" - A2" - A3" — Al{-" = A5" = 0 (5.13)

and 1ts integral will be

A; = aay + D (1 =1,2,3,4,5)

In correspondence with equations (5.2) and (5.3) the forces T; and So
are then expressed by the equations

Bfl
T, =a3g + o Sy = f1 (5.14)
where f f are functions of the variable f having the form:

1’ 2

B
£, = ag J[B n dp + ap Jf
0 0

HIX

By B o
n dB + a3 JC - n ap + ah\jg ;5 n dp + ag

= X
fp=bt*Bby Tn+D

J o
3N b, = ! (5.15)

For the remaining forces and moments we have equations (5.4)
and (5.5). The right hand sides of these relations contain small
factors h2/r® and the magnitudes g, &, hyp, Dy, 1y, t, which
on account of equation (5.13) will vary linearly with™ a, as also the
force T;.
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It may therefore be stated that the stresses due to the bending
moments, the shearing forces and the normal forces Tp will be con-
siderably less than the stresses due to. T;. As follows, however,
from equation (5.4), the torsion moments for Aj # O will not, gen-
erally ‘speaking, be subject to this rule. In fact, if in equation (5.4)
the second order of magnitude Bhlg/aa is rejected and the assumption
made that all a; and by, with the exception of a,, are equal to
zero and o(H7) and o(Ty), the stresses due to the torsional moments
and the normal forces compared, there is obtained

2

UHl):in.r—
@®

o(T1

Hip

&
2

This magnitude will not always be negligibly small even for a short
rod. From this the conclusion follows that a short thin-walled rod
behaves like a shell in which there arises a zero-moment stress state,
supplemented by the presence of torsional moments while bending moments
are absent.

In connection with this it is necessary to verify whether it is
possible to make use of the law of conjugate tangential forces. For

this purpose, under the same assumptions as above, we compute the
above mentioned magnitudes and form their ratio. We have

H h2n3a?

1
6(1 + c)rgkjdfi n dp
r2

S =

This magnitude is considerably smaller than unity provided that T
and J[@n dB/r2 are not too small so that the law of conjugate
tangentlal forces in short rods is satisfied.

Let us return to the equations for the tangential forces and
replace relation (5.5) by the condition of conjugate tangential forces:



NACA TM 1322 39

With the aid of equations (5.14) and (5.15) we then obtain
= &las + 8~ X @ i X o, Ly &
Tl = “{%1 + an o + a3~¥ + a) re]n + [bl + bo ~ + b3 - + by raJn

. B B x B ¥
S1 = -850 = -a n dB - JF =n 4B - a u[\ n dap -
1 2 1\/; 82 o T 3 o T

B w
a \jﬁ — 1 48 - as
horz

We see that the stress In the cross-sections of a thin-walled rod
depends on nine constants. Of these a; and a5 determine the values

of the force Sy, at the straight edges of the shell, since on account
of the relations of orthogonality (2.10) the coefficients of ap, as,

a), 1in the expression for Sp become zero for B =0 and B = By.
Assuming for simplicity that there are no longitudinal forces at the
straight edges we must set

a; = a5 =0

The five constants 89, a3, bl, b2, b3 have a simple physical

meaning: They determine those stress states in a shell for which it
behaves llke a solid rod, namely, byl gives the tension, bo, b3 give

the pure bending by the end moments relative to the principal axes Y
and X respectlvely; ap, a3 give the bending by the transverse forces
directed respectively along the principal axes Y and X. The two
remaining constants a) and b) correspond to the stress states dif-
ferent from those which arise in solid rods, namely, a) gives the tor-
sion which must be distinguished from the Saint-Venant torsion, since
it is brought about by the shearing forces and not by the torsional
moments; b) glves the stress state which we shall call sectorial,
thereby emphasizing that in it, as also in the above mentioned torsion,
the normal stresses are distributed according to the law of sectorial
areas.

The latter stress state is in principle a new one. The forces
which give rise to it, applied at the end sections of the rod, are
self-balanced at each end separately. We introduce the notation
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B

foo

Po Po
r f Ty dB = B f Spdx
0 0

r

wvhere N, M,, My, Qx> Qy are
theory of sclid rods: N 1is the
bending moments, Qy,

cipal directions. The magnitudes
rods do not enter: B 1s the fle
by V. Z. Vliasov), a force factor

may be thought of as a palr of moments;
51; which, again using the terminology of

due to the shearing forces
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BQ : Bo
TydB = N r‘jp Tix 4B = —My r\jp Ty 4B = M,
0 0

Po Bo
Qx j;'sldy=Qy fo S1dw = My,

(5.16)

static factors familiar from the
tensile force, M,, My the principal

the shearing forces acting along the prin-

B and M, in the theory of solid
xural-torsional bimoment (a term used
statically equivalent to zero which
My 1s the torsional moment

Vlasov, we shall call flexural-torsional in order to differentiate it
from the torsional moment due to the nonuniformity of the distribution

of the shearing stresses over the

thickness of the wall of the shell.

The magnitudes, introduced by equations (5.16), are connected with

the constants

a;y and by by equations which are derived from the

conditions of orthogonality (2.10):

_F M-
N=mh My = g (222 + P2)

Iy Tw

= ——— b B = b

M, = 507 (a.3cz. + 3) — (ahu, + lt)
Representing Mx’ My’ Mm in the form
(0) (1) (0) (1)
M, =M, 4 oM, M, =M+ oMy

B =39 4 gl

1) (5.16")
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we may write

: 2h 1 Shr 1
- a3.= 0. ap =__Iyr My( ) a3”?_1x:_nxs ?u_
2
2hr=_(1)
au '—]:)—B 8.5 =0
oh 2hr . (0) ohr . (0) 2hre _(0)
b, == N by =-=— by = = by = B
1°F 2= Y 37T, Iy
(5.17)
On the other hand
2 2 3
2hr 2hr 2hr
= 8, = —— = ————
R 3571, Y 2 =7 My
whence
1 1 1
My()='er Mx()'_‘rQy B()=rMu)

The first two of these equations express the conditions of the equi-
1ibrium of an arbitrary part of the rod taken between the 1initial
section a = 0 and another arbitrary section. The third equation
establishes a relation between the flexural-torsional bimoment and the
flexural-torsional moment. This relation does not, however, follow
from abstract statical considerations like the first two but reflects
definite properties of cylindrical shells.

6. DISPLACEMENTS OF THIN-WALLED RODS

The displacements of rod-shells may be obtained by making use of

the geometric relations
l/ov w 1{ou ., ov
r\oB 3B © Ja

Let T; and S, be defined by equations (5.14) and T, = 0, as
follows from (5.5) with a certain degree of approximation.

o/
o

m
’_—I
i
H
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Then

\: of
N 3 1 du _ 1
EEhﬂEl—Tl—aEhﬂrg&'—agB—+f2

of
2Ehne2 = -O'Tl = 2Enn :—IL‘@-E - -;-’) = -0 (a. —B-]é' + f2>

2Ehn% = -(1 + g)Sp = 2Ehny —2%-.(2% + %E) =-(1+o0)f

Or, 1f these equatlons are solved for u, v, W, we obtain

%u=ﬁl'(g?2%+“f2> 52V,
28h - E‘Q:_zé%gz_l 53_27235_2+2(1+o)a;%%+
S R RIS

where -, 11;2 are arbitrary functions of integration depending only
on the magnitudes 8.

In order to clarify the geometric meaning of the functions Vj
and VYp We put

Then

Continued on next page
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oY
OBhky = O 2Ehn2---2-Er—h§éL<ayBl_ 2)
aw ' - :
aEhT _-@La—— (6.2)

This corresponds to an infinitely small Bending of the middle surface
(to a deformation which maintains the geometry at the middle surface).

The arbiltrary factors which are contained in the functions V-,
We make 1t possible to satisfy the geometric boundary conditions but
in choosing V7 and VYo 1t 1is necessary to maintain the correspondence
between the geometrical and statical results. This reduces to the
requirement that the deformations k1 ‘and ko, and together with these
the bending moments, become zero because in the principal stress state

of a short rod the torsional moments must predominate over the bending
moments.

Equations (6.2) show that for this it is necessary that the two
equations be satisfied:

whence

W1=C1+C2%+C3¥+C)+;m2-
d1 % . 2 ay , 93 aw
’\Vg =?d—ﬁ +—r— d_B +-;§EE (6.’4—)

There remain undetermined the seven constants ¢4 and dy. Six
of them c¢y, c¢p, €35 dy, dp, d3 correspond to the displacement

of the shell as a rigid whole. This follows from the fact that for

= 0 the function V¥, determined by the first of equations (6.4) in
additlon to satisfying the second equation of (6.3) satisfies also the
equation

awl
L'BB— =

and all the six components of the deformation are egual to zero.
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The constant c defines a new geometrical factor, namely, the
"deplanation" (term introduced by V. Z. Vlasov). The basis for the
introduction of such a term 1s the fact that for c) #£ 0 +the cross-
sections of the rod cease being plane.

The functions V¥, V,, if they are given by equations (6.4),
determine the deflections of the middle surface (among them are
included also the trivial deflections, that 1s, the motlons of the
shell as a rigid whole) which are either altogether not accompanied by
the appearance of moments or which give rise to only torsional moments.

All other deflections in the construction of a theory of thin-
walled rods must be rejected because according to the results of the
preceding section they either correspond to local stress states or will
necessarlly be accompanied by the appearance of forces and moments at
the straight edges.

Let us substitute expressions (6.4) for V] and Vo in equa-
tions (6.2) for the tangential displacements wu, v. We have

= X L @L
u=cy+ey T ezt 5

o Jeax, B3y Shaw] hrax  ay X
V—-a[r dB+?dB+?_ﬁ]+'r—d_B raf 2

do
a8 (6.5)

Making use of the fact that the system of functions (1, x, y, o) is
mutually orthogonal with weight 17 we obtain

B 2 B
2hr 0 2hr 0

c] = F o un 4p Cp = —T;f o uxn dp

2 pBg 2 B
c3 = 2hr JF um 4B ¢y =-g———\/P won dB
Ix 0 In Jo
2 B B 2 B B

2h 0 2 0

-aco + dl = I; \/; xn dp \/; v dap -acsy +dp = ::t[l; JO yn 4B \‘é\ v 4B

3 B B
_mh + d3 = 2;11. F 0 wn dp f v 4B
o}
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We introduce the notation

B
A2hr\/hno.un 4ap
: o}

1]
=
v

'Bo
2hrf uxn 4B = I 9
'O il Wiy Yy

1]
H
[

Bo Po
Ehr‘jf uym 4B _— Qhr‘jp wn 4B = T,9,
0 : 0

» [Po B o o [Bo B
2hr f xn 4B f v dp = I8y 2hr f yn ap f v dp = Ixﬁy
0 0 0 0

» [Bo B
ohr f wn 4B v dp = 1,9
0 0

(6.6)
The equation for the tangential displacements may then be written

gx
us=§+ 9. x+ ﬁxy + %ﬁb Vo=

3
A N -
¥ + = a5 + 3 (6.7)

B

sle

From this the geometric meaning of the symbols becomes clear: { 1is
the displacement in the direction of the axis of the cylinder, 9, 6y
are the angles of rotation with respect to the principal axes X and Y
lying in the plane a =0, gx, gy are the displacements 1n the direc-
tlon of the principal axes X and Y, 6 1is the angle of rotation relative
to the axis passing through the center of rotation, and 9, 1s the
deplanation.

If the shell is subject to some arbitrary bending the concept of
its displacement as a rigid whole loses its significance. We shall,
however, formally introduce this concept, assuming that from the equa-
tions (6.6) from an arbitrary bending of the shell there are separated
out its displacements as a rigid whole and the deplanation.

The considerations of this section lead to the result that in
constructing a theory of thin-walled rods the two deflectlons giving
the same rigid displacement and deplanation must be considered as
equivalent to each other.




L6 NACA T™ 1322
7. BOUNDARY CONDITIONS

In the preceding sections, from the general system of integrals of
the theory of cylindrical shells, a certain number of elementary inte-
grals were separated out to which it was necessary to restrict oneself
in constructing a theory of thin-walled rods. It 1is therefore natural
that under such conditions it cannot be expected that the boundary con-
ditions will be satisfied with all rigor. Certain boundary conditions
must be entirely rejected and those which are retalned must be put in a
weakened form which reduces to the fact that the functional boundary
conditions for which the value of the required functions is given at
each point of the bounding contour are replaced by the requirements
that definite integral relations are satisfied at the boundaries.

With regard to the static boundary conditions this 1is attained
with the aid of equations (5.16). In place of the condition

51 = 819

vhere Sy 1is a given function of B 1t must be required that the
shearing forces Q, Qy and the flexural-torsional moment M, have
the given values. This gives

8o B, By
JC S1dx = Qxo \/2 814y = Qyo L/; S1dn = My,

In place of the condition Tl = TlO it must be required that the

tensile force N, the bending moments M, My, and the flexural-
torsional bimoment B have given values; this gives

Po

B
r /‘O TldB
Jo

I

rPo Bo
r J le dg M’XO Tr Tl(D dg = BO
0 0

The boundary conditions imposed on the moments and transverse
forces may be rejected since they influence only the end effect
(reference 7). If there is transmitted a nonselfbalanced load in the
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shell with the aid of shearing forces or moments 1t is necessary of
course to take it into account in computing the magnitudes Qyq, Qyo’

Mos Nor M Moo, By

In setting up the geometrical boundary conditions a similar device
may be used.

In place of the boundary condition u = uy the requirement must
be set that £, s, 3y and 3, have given values at the end cross-

section, that is, according to equations (6.6), that the integral
equations be satisfied

Bo Po
2%5 \jp un dp = & %EE\/P uxn dB = dy
0 J Yo

B B

2hr 0 2hr 0

T f uyn 4p = 940 i_f won dB = 8,
X 0 (e 0

Similarly the boundary condition v = vy 1s replaced by the three
integral relations:

2 B B 2 g B
2hr Jf 0 x Jf = ¢ 2hr Jf o Jf £
n 48 v dB = yn 4as v dp =
Iy Jo 0 x0 Ix Jo 0 )

2 ~Bp B
2hr
Iw \jﬁ wn dp Jf v dB = 60
0 0

The conditions imposed on the normal displacement and the angle of
rotation influence, as a rule, only the end effect and therefore they
need not be taken Into account. The investigation of the exceptional
cases which may hardly be encountered in practice would lead us too far
from our subJject.

In replacing the functional boundary conditlons by integral condi-
tions we replace the actual end load (including in its composition the
reactive forces) by another statically equivalent load, which gives,
moreover, the same flexural-torsional bimoment. The difference between
these two lpads produces local stress states not taken into account in
the theory of rods.
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Within the limits of accuracy of the theory the boundary condi-
tions may be replaced by integral relations and also by other methods.
The approach here employed is to be preferred only because of its
simplicity and physical clearness.

8. GENERAL EQUATIONS OF THE THEORY OF THIN-WALLED OPEN

SECTION RODS OF MEDIUM LENGTH

We now have at our disposal all the necessary data for proceeding
to set up the fundamental equations of the theory of thin-walled rods.
Let the rod be loaded by an arbitrary transverse surface load and end
forces. The particular integral determined by the surface load is
expressed by equations (3.9). According to these conditions, in the
same manner as in section 6, the displacements may be found. For the
tangential displacements we obtain the equations

3P
u¥* = -%? T§ X I v+ = i] Jf da\jp d.a,b/p ¢(a)da

'i%%j;sm dE‘/;adaAa £(a)da (8.1)

By addaing this particular integral due to the transverse surface load
to the displacements (6.1) due to the end forces we obtain the total
displacement. Having the total displacement the components of the
rigid displacement and the deplanation may be computed, making use of
the determination of these magnitudes from equations (6.6). If we
also make use of the notations (5.16) and (5.17), the fundamental
relations of the theory of thin-walled rods may be represented in the
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form (in the computations it is necessary to use the equations of section 2)

§=ar—1%+cl (8.2)
(0)
@ p % M Px f“ fl f“ c2
dy = 37 - - e a 11 t(a)da + — (8.3)
:r2"’5'13,"’*1‘5_:1y rEIyan O(“r

2 Q M, P ' c3
o - w3 s ]
9, = o1 e ET, + ar ET; r f%; f dcx.LA.—<1 dc:r,/éu t(a)da + = (8.4%)

2 oM M L
ﬁm=g‘._!12EI‘D+arEIw _r3mfdafdaj;a§a)m+— (8'5)

(0)
=C!.3r3Qx +a2r2L-2(l+U)Gr(XXQx xy9y+

§x 3! EI 21! ETI Iy EIy Iy EI,
xu) My 1& Py f jﬂ f
da da ds 3 do +
I, EI(D) EI, < ()

)# Px S.xx PL ij MD S / f
da da - + d:
r2(1 + cr)l P T, + . y B, I, ¢ da - ac, q

(8.6)

Syx %  Syy O
- 2(1 + g)ar3(E +
(Ix EI, ~ T, EI

s Mm) hP a a a a
YW 3
T, i, +r EIJ{L daL daj; da,A tE(a)da +
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3 r3 Yo o r2 Eigl -2(1 + o)ar3<amx e Swx Sy +

+
3T T EL, T 2! EL Ip By ~ I, EI,

®
S a a a a
iﬁ”%)) -rhﬁ-?—f d.a,f da.f donf t(a)da +
VS wYo 0 0 0
4 M Saw  Px Sux fgswx fa' fa' cy ds3
r2(1+°)EIXIw TR Ty Ix 1o | Jg da o Eda -~ a7 +F

(8.8)

In addition to the already known notations there were also used above
the new ones

By B B
Sap = 2hrf An dBf Qﬁf Bn ap (8.9)
0 o "o

where A and B are to be replaced by any combination of x, y, w.

Equations (8.2), (8.3), (8.4) in no way differ from the relations
of the theory of solid rods. The first of them connects the longi-
tudinal displacement € with the normal force N. The two last equa-
tions establish the relation between the angles of rotation 94, 3
on the one hand and the shearing forces Q,, Qy, the bending moments

My(o), Mx(o) and the surface transverse load on the other. If all

the magnitudes SpAB were equal to zero equations (8.6) and (8.7)
would transform into the relations of the theory of solid rods. They
would then express the deflections ga, §B by the shearing forces,

the bending moments, and the transverse load.

The difference of the theory of open thin-walled rods from the
theory of solid rods consists, in the first place, in the presence of
terms depending on S,.; in the second place, in the theory of thin-
walled rods it is necessary to take into account a new static factor,
namely the bimoment; in the third place the torsion of a thin-walled
rod is produced by a flexural-torsional moment statically equivalent
to the torsional moment of the Saint-Venant theory of torsion but
having an essentially different origin. A very important consideration

is that the deplanation QD and the angle of torsion 6 are both

connected with the flexural-torsional moment and the bimoment by
equations (8.5) and (8.8) (having no analogue in the theory of solid rods).
It follows that 4, and 6 are closely connected with each other.
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It 1s easy to see that the magnitudes Spp will not figure in

the fundamental equations (8.2) to (8.8) if the elasticity rela-
tion (1.3) is replaced by the requirement of the absence of shear 7 = O.
The "terms containing the magnitudes . Spg thus take into account

the effect of the shear. These terms, generally speaking, play a
secondary role since they contaln the variable a +to lower degrees
than the fundamental components. The question, however, of the order
of the errors taking the shear into account requires further
investigation.

If we make the assumption
‘7 o

the solution of concrete problems is considerably simplified. In this
case the relations (8.2) to (8.8) will almost entirely agree with the
equations derived by V. Z. Vlasov. Only equation (8.8) will be differ-
ent. The corresponding equation of Vlasov 1s more complicated and as
has been shown above the increase in accuracy was obtained by a formally
contradictory device.

In concluding this section we shall make one more remark. The
particular integral (3.9) corresponds to a certain fictitious load Ry
statically equivalent at each cross-section of the shell to the true
load R. The difference between the true and fictitious loads is the
self-balanced load Rp, the action of which was considered in the
second part of section 3. It was shown that by a corresponding cholce
of the arbitrary constants of integration for this load (if it varies
linearly with a) a particular integral may be specified which in the
cross-sectlions gives only the forces statlcally equivalent to zero. In
the theory of thin-walled rods, however, they cannot be ignored. More
accurately, it is necessary to separate out and take Into account those
forces which vary according to the law of sectorial areas. This can
be done with the aid of equations (3.18) according to which the force
T; bhas the form:

Tl = 2Ehﬂ€l + GTE
and ¢7 1in turn may be wrilitten
= B

The functions Bl’ Ba, B3 are so chosen that T1 is'self-balanced,
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that is, the integral_equations are satisfied

r\jﬁ T1dB = N =0 r‘JF Tyx dB = -My =0
0

0

Bo
r JF TydB =M, =0
0

The bimoment B* will be different from zero and may be computed:

Po
B* = r Jf Ti® 4B = “fjp Tyo dp (8.10)
o

The force T, entering the above equation is obtained from the com-
putation of a curved strip of unit width cut out from the shell and
loaded by the load Ro. The bimoment ?* must be added in equa-
tions (8.2) to (8.8) to the bimoment B(O).

Translated by S. Reiss
National Advisory Committee
for Aeronautics
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